DNA: Deoxyribonucleic acid. The double-stranded chemical instruction manual for everything a plant or animal does: grow, divide, even when and how to die. Very stable, has error detection and repair mechanisms. Stays in the cell nucleus. Can make good copies of itself.
RNA: Ribonucleic acid. Single-stranded where DNA is double-stranded, messenger RNA carries single pages of instructions out of the nucleus to places they're needed throughout the cell. No error detection or repair; makes flawed copies of itself. Evolves ten times faster than DNA. Transfer RNA helps translate the mRNA message into chains of amino acids in the ribosomes.
[Diagram of RNA vs. DNA: chemical structure and composition]
Base: a building block of DNA and RNA. There are five different bases: Adenine, Thymine, Guanine, Cytosine, and Uracil (which is found only in RNA and replaces Thymine in DNA).
Ribosomes: Message centers throughout the cell where the information from DNA arrives in the form of messenger RNA. The RNA message gets translated into a form the ribosome can understand and tells it which protein building blocks it needs and in what order to assemble them. Ribosomal RNA helps the translation go smoothly.
Amino acids: Polypeptide (protein) building blocks.
Polypeptides: chains of amino acids. Proteins are made up of several or many polypeptides.
Proteins: Chemicals that make up cell and organ structure and carry out reactions throughout the body, from breaking down food to fighting off disease.
RNA: Ribonucleic acid. Single-stranded where DNA is double-stranded, messenger RNA carries single pages of instructions out of the nucleus to places they're needed throughout the cell. No error detection or repair; makes flawed copies of itself. Evolves ten times faster than DNA. Transfer RNA helps translate the mRNA message into chains of amino acids in the ribosomes.
[Diagram of RNA vs. DNA: chemical structure and composition]
Base: a building block of DNA and RNA. There are five different bases: Adenine, Thymine, Guanine, Cytosine, and Uracil (which is found only in RNA and replaces Thymine in DNA).
Ribosomes: Message centers throughout the cell where the information from DNA arrives in the form of messenger RNA. The RNA message gets translated into a form the ribosome can understand and tells it which protein building blocks it needs and in what order to assemble them. Ribosomal RNA helps the translation go smoothly.
Amino acids: Polypeptide (protein) building blocks.
Polypeptides: chains of amino acids. Proteins are made up of several or many polypeptides.
Proteins: Chemicals that make up cell and organ structure and carry out reactions throughout the body, from breaking down food to fighting off disease.